Residential On-Site Sewage Systems: Installer Certification Exam Review

Rule 410 IAC 6-8.3 (revised and republished on May 9, 2014)

IOWPA - February 17-18, 2021

Indiana State Department of Health

Environmental Public Health Division

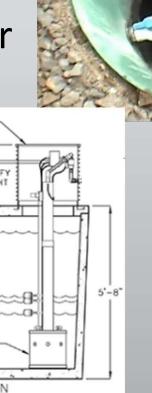
Alice Quinn, Residential On-Site Manager

David Ortel, ISDH Field Staff

Joe Rakoczy, ISDH Field Staff

Julia Hayes, ISDH Field Staff

Mark Miller, ISDH Field Staff



Tanks

- Section 60 Septic Tank General Requirements
- Section 61 Septic Tank Construction Details
- Section 62 Dosing Tanks
- Section 63 Septic and Dosing Tank Installation and Maintenance

Section 62 - Dosing Tanks

- a) Dosing tanks shall be
 - 1) Watertight
 - 2) Protected from Corrosion
- b) No cast in place, concrete block, wood or metal

FIBERGLASS LID AVAILABLE IN LAWN GREEN

TO CONTROL PANEL

120 GAL DOSE VOLUME

EASYPAK®PUMP VAULT TUBE® EFFLUENT FILTER TO PROTECT PUMP

Section 62 Dosing Tanks

- e) No portion of the dosing tank capacity can be considered part of the required septic tank capacity.
- f) The liquid holding capacity
 - The dose volume required by this rule for each type of soil absorption field
 - Plus drainback
 - Plus volume to keep pump submerged
 - Plus freeboard for high water alarm

Section 62(f) Dosing tank holding capacity. **Quick Disconnect** Float Tree (optional – Discharge line – floats can be attached typically 2" in the tank to the discharge line). Tank inlet Required dosing tank capacity = P + D + FR - Reserve Capacity A - High water alarm D - Dose volume (DDF) plus drainback (if **EFM drains to tank)** P - Keep pump submerged **Tank Capacity** Pump Effluent

pedestal

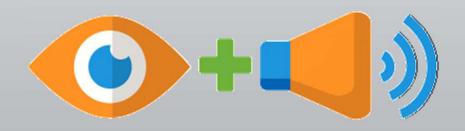
Pump

in gal/in

Section 62 Dosing Tanks

g) Pipe Connector requirements:

- Each pipe penetration shall be sealed with a flexible, watertight connector
- Precast concrete tanks shall use cast in place connectors conforming to ASTM C1644-06
- Poly tank connectors must conform to ASTM 923-08.


An example of a <u>Flexible</u>, Watertight Connector

Section 62 Dosing Tanks

- h) Effluent pump with alarm
 - 1) Separate circuit from pump
 - 2) Audible and visible

Section 63 Tank installation and maintenance

- a) Installed level on
 - 1) Undisturbed soil
 - 2) Sand
 - 3) Aggregate ≤1½"
 - 4) Engineered base
- b) All drain holes plugged
- c) Watertight securely fastened covers
- d) Risers to or above final grade
 - 6) Watertight
 - 7) Childproof plug (IC 16-41-25-3)
- f) Sewer joints between tanks sealed according to manufacturer's instruction to be watertight

Question 4

4. What capacities are required in a properly sized dosing tank?

- A. Dose volume for the system type plus any drainback.
- B. Volume to keep the pump submerged at all times.
- C. Freeboard for high water alarm
- D. All of the above.
- E. A and B only.

Section 65 - Effluent Pumps

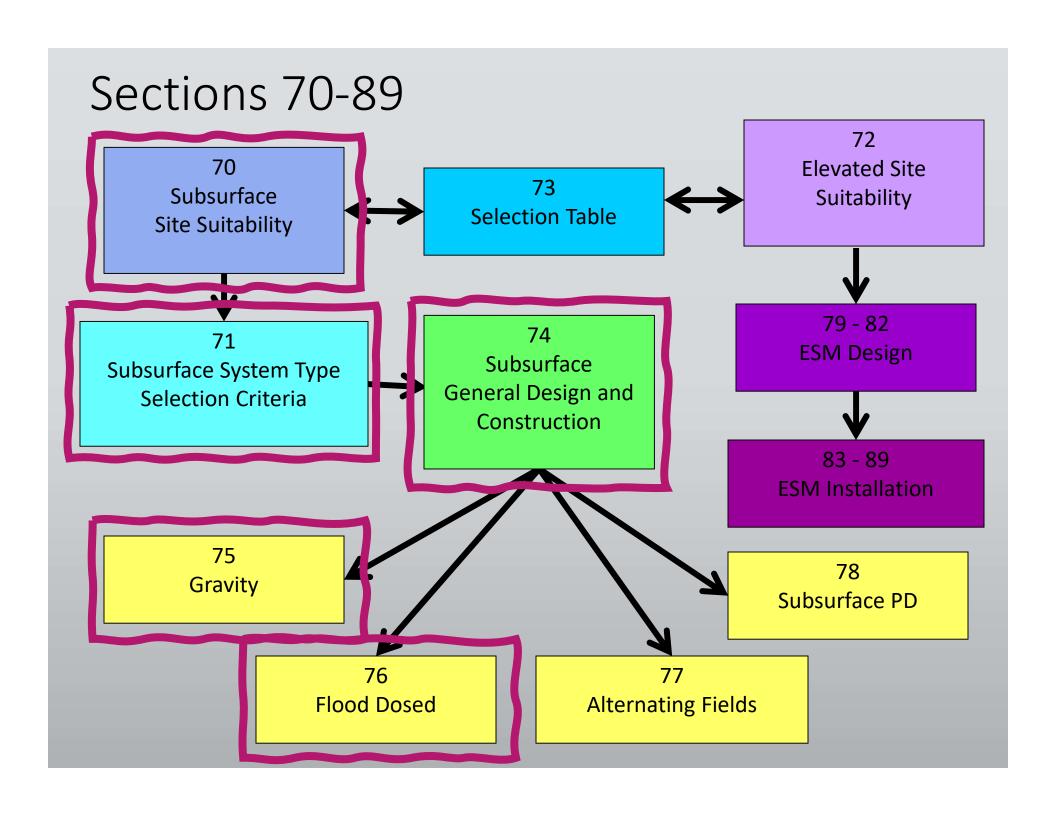
- a) Effluent pumps
 - 1) Submersible
 - 2) Sized for TDH at GPM
 - 3) Attached to secure discharge pipe
 - 4) Installed so can be removed without entering or dewatering tank
- b) Quick, convenient disconnect
 - 3) Readily accessible from ground surface without entering tank
 - 4) Lifting apparatus

Brass

Union Connector

Section 65 - Effluent Pumps

- c) Floats mounted per manufacturer's recommendation with appropriate fasteners
- d) Controls, other than liquid level sensors, not located in dosing tank


NEMA-4X

J-Box

- e) Junction boxes NEMA 4X rated
 - all connectors with watertight seals
- f) Plug all connectors not used.

Section 67 - Pipe Specs

- a) Piping in OSS
 - 1) Gravity Sewer pipe (PVC and ABS)
 - Pressure sewer, effluent force main, manifold, pressure distribution laterals (PVC and ABS)
- b) Gasketed compression joints used on sewers ≤10' from water lines
- c) SAS gravity distribution laterals

Subsurface Trench OSS

Site Suitability - Section 70

- (a) Site evaluation, soil evaluation and DDF.
- (b) Site conditions must be met:
 - 1) Sufficient area (separation and dispersal)
 - 2) Appropriate topographic position
 - $3) \leq 15\%$ slope
 - 4) Proportionate loading of effluent.
 - 5) Seasonal high water table
 - 6) 7 & 8) Limiting layers identified and addressed
 - Wisconsin glacial till soils WITH EFFERVESCENCE
 - Coarse fragments
 - Soil loading rates ≥0.25 and ≤1.2

Subsurface trench OSS

Site Suitability – Section 70 (c) subsurface trench soil absorption systems shall NOT be constructed as follows:

- 1) In areas of runoff
- 2) Trench bottoms below RFE
- 3) Areas that pond
- 4) Drainage ways (wholly or partly)
- 5) On sites with compacted soil at a depth greater than 12 inches (unless an ISDH approved method is used).

Subsurface Trench OSS Selection Criteria – Section 71

- d) Alternating Fields or dosed using a pump:
 - 1. SLR between 0.25 and 0.75 gpd/ft²
 - 2. 24" of soil between trench bottoms and limiting layer
- e) >500 LF of trench length requires pump assisted distribution.

410 IAC 6-8.3-73 Table for on-site sewage system selection

Sec. 73. On-site sewage system selection may be summarized in Table VI as follows:

Table VI - Table for Or Subsurface Trench OSS						Flevated Sand
Site Requirements	Gra (G ,1	Alt /FD	FD	PD	Mound On-site Sewage Systems (Sec. 72)
DDF Slope		5%	≤15%	≦15%	≤1.5%	≤6%
Design Daily Flow	≥450	< 450	Any	Any	Any	Any
0.25-0.75 SLR	≥0.25 ≤0.75	≥ 0.25 ≤ 0.75	≥ 0.25 ≤ 0.75	≥0.25 ≤0.75	≥0.25 ≤1.20	≥ 0.25 ≤ 1.20
Separation <0.25	≥ 30	≥24	≥24	≥24	≥24	≥20
Separation >1.2	≥30	≥24	≥24	≥24	≥24	≥20
Separation 1.2	≥30	≥24	≥24	≥24	Press. Dist. required for SLR = 1.20	≥0
Separation W.till	≥ 30	≥24	≥24	≥24	≥24	≥20
Sep. C F (35%)	≥ 30	≥24	≥24	≥24	≥24	≥20
Sep. C F (>60%) > 60% Coarse Fragments by Volume	≥ 30	≥24	≥24	≥24	≥24	≥20
Separation SH ₂ 0	≥ 24	≥24	≥24	≥24	≥24	≥ 20
Lineal ft. limit	≤500	≤ 500	≤500 for Alt. Fields	Any	Any	N/A

- (a) Minimum absorption area based on:
 - 1) # of bedrooms and equivalents
 - 2) Most restrictive SLR within 24 inches of trench bottom
 - 3) Absorption area = DDF/SLR= FT²
- (b) Long and narrow
- (c) Meet separation distances
- (d) Protect the site from vehicular disturbance before, during and after construction

- (e) Proper soil plasticity for installation
- (f) Vegetation removed without causing compaction.
- (g) Proper design or removal of trees
- (h) Do not smear the sidewalls or bottom of the trenches
- (n) Trenches constructed along contour
- (o) Trench min/max depth
 10" from original grade ~ 36" from final grade

- (p) Trench min/max width: 18in-36in.
- (q) Min. separation distance: 7.5 ft oc
- (r) Max length 100 ft (except Pressure Distribution)
- (s) Trench & distribution laterals to be level throughout length & width
- (t) Distribution laterals & trenches shall NOT be tied together at distal ends.

- (u) Distribution lateral distal ends capped
- (v)-(w) Aggregate envelope for perforated pipe 6" 4" 2"
- (x) Barrier material over Aggregate
- (y) 12" of cover over aggregate and crowning over SAF.
- (z) Tire chips, if used, shall be removed from ground surface at cleanup

Section 75 Subsurface Trench Gravity OSS Design and Construction

- (a) Section 74 and this section
- (b) D-box between septic tank and SAF with each trench connected directly to d-box with effluent sewer.
- (c) Installed level / materials
- (d) Effluent sewer pipe backfill requirements prior to and after the d-box.
- (e) Outlets with same invert elevation

Section 75 (d)

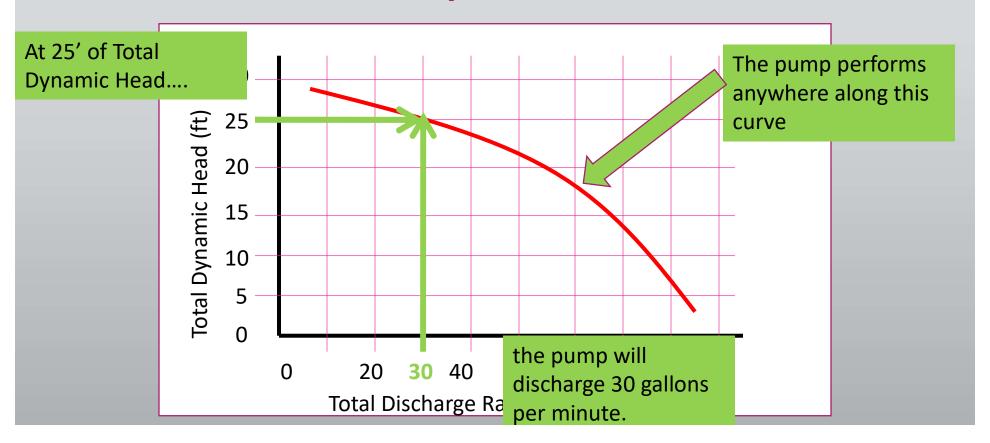
- Installation of effluent sewer pipe
 - When installed <u>prior to the distribution box</u>, effluent sewer pipe shall be bedded according to <u>manufacturer requirements with debris-free</u> <u>soil material or aggregate</u> without damaging the pipe
 - When installed <u>after a distribution box</u>, effluent sewer pipe shall be stabilized, bedded and backfilled without damaging the pipe with <u>debris-free soil material</u> to prevent the migration of effluent along the outside of the pipe

Section 75
Subsurface Trench Gravity OSS Design and Construction

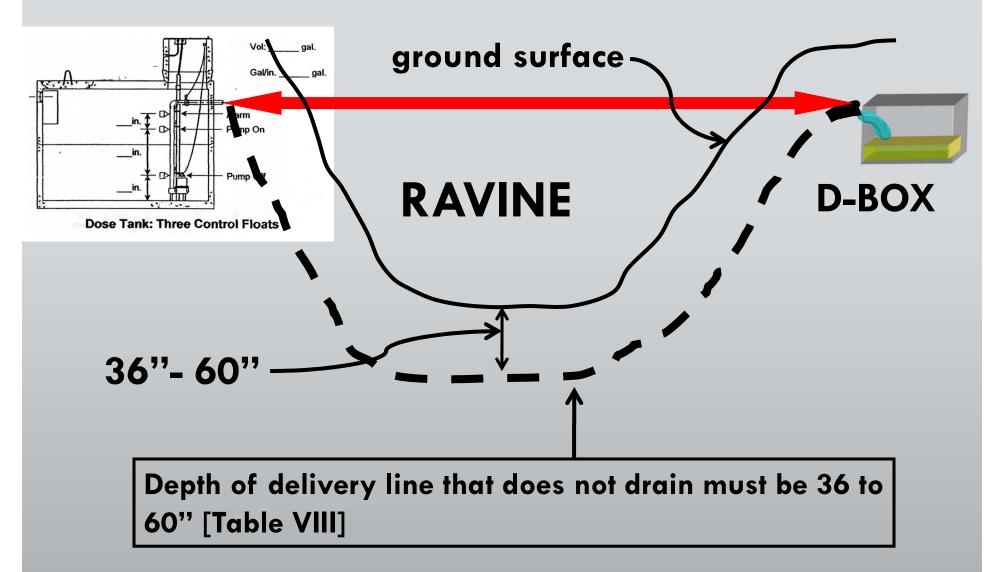
- (f) Effluent sewer extends into aggregate in trench
- (g) Gravity distribution laterals 4 in. diameter
- (h) Gravity distribution laterals shall be level / hole placement
- (i) 5 ft. between d-box and proximal end of trench

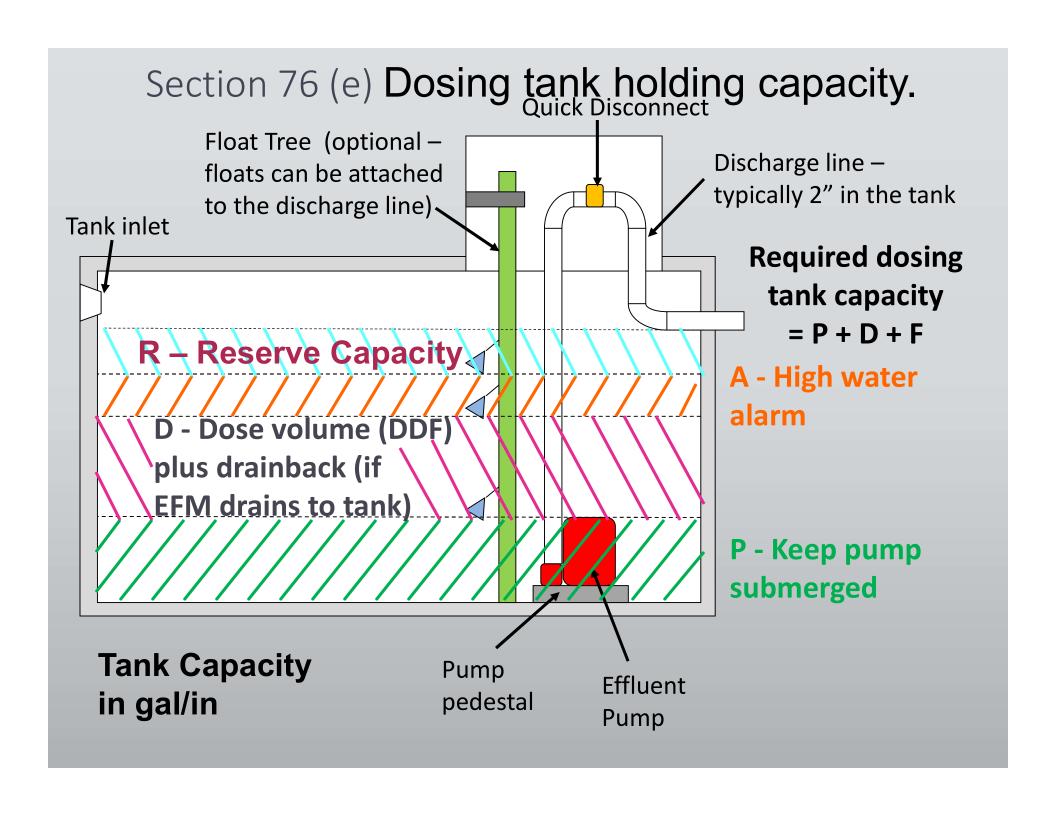
Section 76 Subsurface Flood Dosed OSS Design and Construction

- (a) Sections 74, 75 & this section
- (b) The pump shall deliver 1 DDF in each dose. Effluent pump selection based on required discharge rate and total head on pump.


Table VII – Discharge Rates for Flood Dosed systems						
Number of Bedrooms	Discharge Rate (gpm)					
1	30-35					
2	30-35					
3	30-45					
4	30-60					
5	38-75					
6	45-90					

Dose Volume = 1 DDF


The system will be dosed, at a maximum, once per day

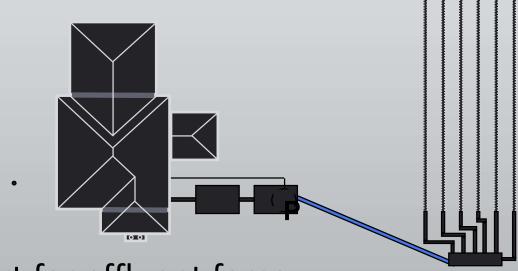

Section 76 Subsurface Flood Dosed OSS Design and Construction

(c) Total head sizing for the effluent pump = static head plus friction loss.

(d) Effluent force main shall drain between dosed or buried below frost line

Section 76 Subsurface Flood Dosed OSS Design and Construction

- (f) Distal end of effluent force main
 - Elbow turned down with weep hole
 - Sanitary Tee
 - Baffle



Section 76
Subsurface Flood Dosed OSS Design and Construction

Effluent Force Main

(g) Minimum 1 inch diameter Maximum 4 inch diameter

(h) Friction loss chart for effluent force mains and manifold.

Question 5

5. What 3 things are required to correctly size an effluent pump?

- A. Total dynamic head (TDH), system discharge rate (gpm), a pump performance curve.
- B. Dose volume, TDH, pump manufacturer.
- C. Total dynamic head, required flow (gpm), the depth of subsurface drainage.
- D. Dose volume, elevation of the d-box, the pump manufacturer.
- E. Diameter of the force main, hp of the pump, depth of drainage.